Regular and substantial water changes for an aquarium are a good idea.  With EI fertiliser dosing the built-in assumption is that at least 50% of the water will be changed out every week to prevent a build-up of excess fertilisers.  Both the Fireplace Aquarium and the Shrimphaus follow this maintenance schedule, although lately I have been doing around 75% water changes to better remove organic particulate debris from the Fireplace Aquarium and to remove salts from the Shrimphaus.

Pre/post water change parameters

Fireplace AquariumShrimphaus
pHalkalinity (ppm CaCO3)pHalkalinity (ppm CaCO3)
before water change7.852649.01342
immediately after water change7.962768.67306
next day7.752799.03309

Continue reading “Water change effects on alkalinity”

I haven’t had much luck growing plants on the Shrimphaus river.  Mostly they dry out either immediately or eventually, or sometimes they rot away.  This roots and bottom bits wet all the time but leaves out in the air niche is pretty challenging.  Some internet digging revealed plants that thrive in this setting are called marginal plants:  those growing on the margins of bodies of water, and they are popular for people with ponds.  Ok, so that’s the right setting, but outdoor ponds are much larger than the Shrimphaus so only the smallest marginal plants might work.  Some shopping around led me to try Bog Arum (Calla palustris), Golden Buttons (Cotula coronopifolia) and Golden Creeping Jenny (Lysimachia nummularia ‘Aurea’).  All of these are listed as growing to a maximum height of about 6 inches.

The plants arrived well-packed in wet newspaper and the first surprise was how big they all were.  The pond world operates on a much larger scale than the aquarium world!  

Continue reading “Marginal plants”

It’s been 10 weeks since the tear-down and rebuild of the Shrimphaus.  One of the things that surprised me in that process is there turned out to not be very many shrimp in the Shrimphaus, and mostly not any small ones.  This suggested that things in the previous build were not as they should be environmentally such that the shrimp had stopped breeding.  The big question was whether the new build would turn that around or not.  It takes four or five weeks from mating until eggs hatch so there has been a bit of a calendar-watching excercise going on and…

We have baby shrimp!

I was pretty excited the first time we got baby shrimp in the Shrimphaus as well.

adult shrimp are much larger than hatchlings
proud parent?

Continue reading “Baby shrimp newly hatched”

Microsorum pteropus ‘Windelov’ also known as Leptochilus pteropus is one of the many varieties of Java fern.  I picked up a pot from Pro Shrimp in an order that also included Alternanthera reineckii ‘Mini’.  Developed by Tropica, the ‘Windelov’ version I received was grown by Aquadip.

The ‘Windelov’ arrived totally overgrown and just a touch ratty on the ends in places as if it had been waiting for a sale for a long time.  I don’t mind actually, and the pot separated out into a nice variety of sizes and forms of plantets.  Java fern is a rhizomatous plant where a thick lateral ‘stem’ sprouts leaves growing upwards and roots growing downwards.  Although there are many terrestrial plants that grow with rhizomes underground, the conventional wisdom in the aquarium trade is that rhizomes must never be buried in substrate or they will rot and kill the plant.  Accordingly, best practice is to attach the rhizome to a component of hardscape, usually rock or driftwood, either by tying it on with thread/line, or more simply by ‘supergluing’ it on using a cyanoacrylate-based adhesive.  It is also possible to wedge the rhizome into a convenient crack in the hardscape where eventually the roots will naturally bind the plant on.

Continue reading “Planting Microsorum pteropus ‘Windelov’”

After an unsuccessful go with Alternanthera reineckii (didn’t thrive) and another with Alternanthera reineckii ‘Rosanervig’ (eaten by Amano shrimp), I’m giving it try with Alternanthera reineckii ‘Mini’.  This AR ‘Mini’ came from Pro Shrimp, and was grown by Tropica.  I have had mixed results purchasing aquatic plant tissue culture cups before, but this AR ‘Mini’ cup is one of the best I’ve ever seen.  The plants arrived in superb condition, with a huge number of goodly sized, mostly correctly structured plantlets.  Sometimes tissue culture plants can have a confused growth structure where it seems the plant doesn’t really have a good sense of top (leaves) from bottom (roots) and in some quarters tissue culture plants have a reputation for being more fragile than their potted counterparts, but I’m really optimistic about this latest batch.

Continue reading “Planting Alternanthera reineckii ‘Mini’”

After three weeks of treating the Shrimphaus with Tetra AlguMin in an attempt at chemical control of black beard algae, I can confidently report that monolinuron, the active ingredient in AlguMin, has absolutely no effect whatsoever on black beard algae (BBA, black brush algae).  The algae is as healthy and bushy as ever, does not scrub off even with vigorous rubbing, and may even have grown a little thicker.  I can’t really tell whether monolinuron was effective against green algae, as that wasn’t a major problem and so I wasn’t paying careful attention.  Certainly there was no visible green algae at the end of the treatment but there may not have been much in the first instance.

Monolinuron is safe for shrimp and snails

When used as directed at full strength, there were no adverse effects on either the zebra thorn snails, or on the cherry shrimp.  For a black beard algae reset, sterner measures are needed.

Black beard algae (BBA, brush algae) used to be a bit of a nuisance in the Fireplace Aquarium, but since switching to a high phosphateestimative index dosing regimen, BBA and really all forms of algae have been pretty much a non-issue.  Tanks need to sort their own equilibrium, and what works for the high-tech CO2-injected Fireplace Aquarium is not necessarily appropriate for the low tech Shrimphaus.  In general I prefer to ‘live and let live’ within reason for algae in an aquarium but in the Shrimphaus BBA has got to the point where it’s hurting the plants and not looking very pretty either.

What to do about it?

Continue reading “Chemical control of black beard algae”

After repeated struggles to grow emersed plants on the Shrimphaus river using a variety of substrate set-ups, I’ve switched over to actual LECA – lightweight expanded clay aggregate.  For this experiment, I’m going with two reputedly robust to low(er) humidity emersed growth anubias:  Anubias coffeefolia, and Anubias gracilis.  This is the second attempt with Anubias coffeefolia, but the previous go seemed encouraging, with some new leaves forming before ultimately the plant was done in by rhizome rot.

Adapting plants to grow in LECA

Although aquarium plants are generally grown in emersed form in the nursery, they are typically potted in rockwool in a near 100% humidity hydroponic ebb and flow environment.  Transitioning terrestrial plants to LECA can be challenging and there are a lot of helpful resources with great tips available including to make sure every last bit of non-LECA substrate has been removed from the roots before planting in LECA.  The process seemed straightforward but the plants started wilting almost immediately.  It’s pretty well established that misting plants directly doesn’t meaningfully raise humidity so I did an improvisation with the conical plastic sleaves the plants shipped in.  Cutting off the bottom of the cone to fit snugly halfway up the pot gave a large surface area on top that could be misted to both keep a lot of water droplets around for a reasonable length of time close to the leaves and to provide a locally semi-isolated environment.  I kept the plants in the enriched humidity setup for three weeks, misting a couple times a day.  That seemed to mostly do the trick to give the plants enough time to adapt to being rooted in LECA; the gracilis didn’t really lose any leaves to wilting, and although the new coffeefolia did lose half its leaves it seems to have stabilised (hopefully).

Repotting to get rhizomes out of substrate

Five weeks after planting, it was time to take the plants out of the LECA to see how the roots were doing and repot if necessary.  Pretty much things were looking good, with healthy looking whitish roots with good structure.  There were however some brown rotted aspects in places, in particular where the rhizomes had been embedded in the substrate.  I used pinsettes to trim off those portions and gave the root systems a good rinse.  Then I replanted taking care to have the entirety of the rhizomes out of the LECA.  This meant essentially having the plants growing on the side relative to how they arrived in rockwool.  Possibly an ebb and flow hydroponics system in the nursery is more permissive since plants can dry out during the ebb phase, compared to the steady-state semi-hydroponics method of sitting LECA embedded plants in the Shrimphaus river.  The repotting process was easy and the repotted plants look good so far, but the real test will be whether the rotting stops and we start to get some new growth.

There’s an interesting new inhabitant in the Shrimphaus, what looks like a spontaneous mutation in the bloody mary shrimp lineage.  Bloody mary shrimp are generally a solid translucent red throughout but this little fella (I think it’s a boy) is mostly clear and colourless, except for a red head, red stripe just above the tail, and one red horizontal back segment.  This is the “rili” pattern, and is reasonbly easy to find in red cherry neocaridina shrimp, but there isn’t much information on ‘bloody mary rili’ shrimp.  The eyes seem to stand out a lot more as well.  I think this is because in the usual bloody mary shrimp the eye region surrounding the black pupils is reddish pink, whereas this googly eyed individual has completely white surrounding tissue.

bloody mary shrimp
“regular” bloody mary shrimp

Bloody mary neocaridina shrimp have a reputation as being reasonably genetically stable, so this seems a little unusual.  I’ll keep a look out to see how this one develops – I’m not actually certain it is a bloody mary shrimp – and whether any more different and interesting mutants come up.

passive hydroponics pots
passive hydroponics pots

It’s been difficult with the emersed plants on the Shrimphaus shelf.  Some descriptions of the tribulations below.

Growing on the slate surface directly (doesn’t work)

First I tried simply tying Chirstmas moss down in the flow on the riverbed to see if they would grab onto the river bottom, but that didn’t really work – it seems they need something for the roots to hang onto.  Even though Christmas moss roots can grab onto surfaces, they didn’t do that in this context and the green parts didn’t really thrive either.  I’m now growing Christmas moss completely submersed in the Shrimphaus and it seems to be doing reasonably well.

clay balls
clay balls

Clay balls roll away (doesn’t work)

So, this could have been obvious, but nearly perfectly spherical clay balls won’t say put in a swift-flowing water current.  They all immediately washed away into the tank.  Also, although these are sold as ‘hydroponic grow media’ what I was hoping for was LECA – lightweight expanded clay aggregate – which is frothed up with air holes and texture to retain water, but these clay spheres are smooth and solid and don’t seem to hold much moisture.

Lava rocks don’t stack and stay too wet (doesn’t work)

lava rock
lava rock

The next attempt was small pieces of irregularly shaped lava rock.  The lava rock doesn’t just instantly roll away and can be successfully piled up.  The odd piece does come lose and escape, but at least you can make a pile of lava rock in the current.  The issue with these is that unlike the clay spheres, the lava rock stays really wet.  I made as high a pile of these as I could without them falling over into the tank and the top of the pile was still completely saturated with water.  I tried growing both Echinodorus grisebachii ‘Tropica’ and Anubias coffeefolia sitting on top of the lava rocks, but the wetness was rotting both of these plants and I suspect also drowning the roots.  This was at least partially successful for a while as both the echinodorus and the anubias put out a few new leaves (before the rot set it) so at least there is some potential promise.  I think the top of the plant needs to kept drier as do the upper parts of the roots for this to work.

Aquaponics

Anubias coffeefolia
wick hydroponics – wick ‘feet’ sticking out the bottom

Combining an aquarium type system with a hydroponics set-up is termed ‘aquaponics‘.  Since it is the emersed plant part that has been problematic I’ve been browsing literture on how to have a successful hydroponics part.  There are a number of proven techniques, none of which resemble the setup on the shelf of the Shrimphaus, naturally.  I’m giving a go to passive wick-system hydroponics, where inert media, in this case the clay spheres, is kept moist by the proximity of a wick that can carry water from the base of the container to the top.  The wicks used here are cut up strips of an automobile synthetic chamois cloth – this part seems to be working really well.  Three wicks seem to be needed to keep the clay balls reasonably moist/damp without being altogether wet.  The echinodorus and anubias look pretty sad in these pots so far, but they might rally…

Update:  Tropical inspiration from Sri Lanka!